STEREOCHEMICAL STUDIES, 47¹, SATURATED HETEROCYCLES, 25¹ A SIMPLE STEREOSPECIFIC SYNTHESIS OF OXAZASTEROIDS

Gábor Bernáth^{*}, Ferenc Fülöp, Gyula Argay⁺, Alajos Kálmán⁺ and Pál Sohár⁺⁺

([#]Institute of Pharmaceutical Chemistry, University Hedical School, H-6720 Szeged, Eötvös u. 6; ⁺Central Research Institute of Chemistry, Hungarian Academy of Sciences, H-1525 Budapest, P.O.B. 17; ⁺⁺EGYT Pharmacochemical

Works, H-1475 Budapest, P.O.B. 100, Hungary)

<u>Summary</u>: 8-Aza-l2-oxasteroids have been synthesized in a simple three-step process. As a consequence of two stereocontrolled reactions, the product is a stereospecifically homogeneous isomer with all-<u>trans</u> ring junctions; its structure has been determined by 1 H and 13 C NMR spectroscopy and X-ray diffraction.

As a continuation of our synthetic and stereochemical studies on bicyclic² and tricyclic³ saturated compounds containing two heteroatoms, our present aim was the synthesis and stereochemical investigation of heterosteroids of type <u>5</u>. During the past ten years, increasing interest has been attached to the synthesis of heterosteroids for pharmacological purposes⁴ and their structures have been widely studied.^{5,6} Of the 8-azasteroid derivatives, <u>dl-trans</u>-3-methoxy-8-aza-19-nor-17<u>a</u>-pregna-1,3,5-trien-20-yn-17-ol hydrobromide, <u>Estrazinol hydrobromide</u>, is used as an oestrogen. The structures of these compounds have frequently been substantiated by X-ray analysis.⁷ This paper deals with the synthesis and stereochemistry of the oxazasteroids <u>5</u>.

The refluxing of homoveratrylamine with cyclopentene oxide or cyclohexene oxide for 10 h in ethanol gave <u>la</u> and <u>lb</u>,⁸ respectively. Compound <u>l</u> was refluxed in benzene with the stoichiometric amount of ethyl chloroacetate in the presence of NaH (50% dispersion in mineral oil; 10% excess). The usual work-up (dilution with ether, washing with hydrochloric acid, drying and evaporation) afforded compound <u>2</u>,⁹ which was converted into <u>3</u> by means of Bischler-Napieralski cyclization (CHCl₃, POCl₃). The residue obtained on evaporation <u>3797</u>

to dryness was treated with aqueous NaHCO₃ solution to give the base $\underline{4}$. Compound $\underline{4b}^{10}$ separated in crystalline form, whereas $\underline{4a}$ was an oil.

On extraction with ether, evaporation and NaBH₄ reduction in methanol at room temperature, <u>4a</u> gave <u>5a</u>,¹¹ the yield, calculated for <u>3a</u>, being 77%. Similar reduction of the recrystallized <u>4b</u> afforded <u>5b¹²</u> in 96% yield. Hydrogenation of the crude reaction products <u>3a</u> and <u>3b</u> at room temperature and atmospheric pressure in the presence of 10% palladium-charcoal catalyst gave <u>5a</u> and <u>5b</u> in 57% and 54% yield, respectively; the yields of the NaBH₄ reduction were 63% and 67%, all calculated for <u>2</u>.

Compounds <u>5a</u> and <u>5b</u> obtained by different reduction modes were found to be spectroscopically identical. The ¹H NMR spectrum of each crude product indicated the presence of a single diastereomer. A compound of type <u>5</u>, containing three chirality centres, can exist as four diastereomers (<u>r</u>-9, <u>t</u>-13, <u>t</u>-14; <u>r</u>-9, <u>t</u>-13, <u>c</u>-14; <u>r</u>-9, <u>c</u>-13, <u>t</u>-14; and <u>r</u>-9, <u>c</u>-13, <u>c</u>-14)⁵.

No.ª	Yield %	M.p. ^O C	Solvent	I.R. bands ^b cm ⁻	l Notes
<u>la</u>	92	86-88	EtOAc	3250 [°] , 3130 ^d	^a All products gave satisfac-
<u>1b</u>	88	101-104	EtOAc	3280 [°] , 3130 ^d	tory microanalyses; ^D on a
<u>2a</u>	83	102-104	Et ₂ 0-Me ₂ CO	1645 ⁰	Perkin-Elmer 325, in KBr pellets; ^C V _{NM} : sharp, strong;
<u>2b</u>	89	118-119	EtOAc	1645 ⁰	$\mathcal{O}_{\mathcal{OH}}$: broad, strong; $\mathcal{O}_{\mathcal{C}=0}$;
<u>4b</u>	92	138-142	Et2 ^{0-Me2CO}	3105 ^f , 1635 ^h	$\mathcal{V}_{(C=CH)}$; $\mathcal{G}_{see text}$; $\mathcal{V}_{C=C}$
<u>5a</u>	9	151-152	Et2 ^{0-Me2CO}	2795, 2750 ⁱ	ring; ⁱ Bohlmann bands of
<u>5b</u>	g	113-115	Me2C0	2770, 2730 ¹	saturated <u>N</u> ~containing ring.

Cleavage of the epoxide ring gives solely the <u>trans</u> product; this reduces the number of possible diastereomers to two. Reduction then gives the <u>r-9, t-13, c-14 all-trans</u> isomer stereospecifically, as it is the sterically and thermodynamically favoured variant of the two possible diastereomers.

The coupling constants^{11,12} derived from the double doublet of H-9 in compounds <u>5a,b</u> confirm the <u>axial</u> position of this hydrogen: one of the couplings between H-9 and the adjacent methylene protons is revealed in a splitting of 10 Hz, arising unambiguously from a <u>diaxial</u> interaction. Since the <u>trans</u> arrangement of H-9 and H-14 is very improbable for steric reasons (there is strong steric hindrance between H-9 and H-15<u>a</u> in all conformations), the configurations given in formulae are the only possible ones.

The crystal structure of <u>5a</u> was solved in the centric monoclinic space group P2₁/n by direct methods using the MULTAN program¹³ refined to a final R of 0,059 for 2534 independent computer diffractometer data¹⁴. The molecular geometry¹⁵ indicating the <u>trans-trans</u> B/C and C/D ring anellations and the hetero atoms at the correct places is shown in Figure 1. As shown by the puckering¹⁶ and asymmetry¹⁷ parameters <u>B</u> is of half-chair conformation with a twofold axis bisecting bond C7-N9, <u>C</u> assumes the usual chair conformation, while <u>D</u> exhibits a half-chair conformation with C₂ symmetry crossing atom Cl6. The bonding around the N and hetero atoms agrees with data reported in the literature.

References and Notes

 Part 46/24: F. Fülöp and G. Bernáth: <u>Synthesis</u>, accepted for publication.
 G. Bernáth, F. Fülöp, L. Gera, L. Hackler, A. Kálmán, Gy. Argay and P. Sohár <u>Tetrahedron</u> <u>35</u>, 799 (1979). 3800

- G. Bernáth, G. Tóth, F. Fülöp, Gy. Göndös and L. Gera, <u>J.C.S. Perkin</u> I. 1765 (1979).
- 4. H. Singh, Heterosteroids and Drug Research. In: Progress in Medicinal Chemistry, Vol, 16. Elsevier/North Holland, Amsterdam, New York, 1979.
- 5. T. A. Crabb and J. S. Mitchell, J.C.S. Perkin II. 1592 (1977).
- 6. T. A. Crabb and J. S. Mitchell, <u>J.C.S. Perkin II</u>. 581 (1979).
- 7. A. J. Olson, J. C. Hanson and C. E. Nordman, <u>Acta Cryst</u>. <u>B31</u>, 496 (1975).
- 8. ¹H NMR data on <u>la,b</u> (CDCl₃) at 60 MHz, ppm:~l.7 and ~2.8: overlapped multiplets of the saturated ring CH₂ groups (6H and 8H) and the CH₂ protons in the chain and the ring CH protons, resp. (6H); $\stackrel{\frown}{}$ OCH₃: 3.85 and 3.95 (2x3H); $\stackrel{\frown}{}$ ArH: ~6.8, ~<u>e</u>(3H).
- 9. ¹H NMR data on <u>2a,b</u> (CDCl₃), ppm: 1.0-2.5: multiplets of ring CH₂ groups (6H and 8H, resp.); 2.5-4.0: multiplets of protons in the chain, overlapped with the CH signals (6H); 50CH₃: 3.85 and 3.90, 2x<u>s</u> (2x3H); 50CH₂: 4.35 and 4.25, <u>s</u>(2H); 5ArH: 6.80, 2x<u>s</u> (2x1H).
- 10. ¹H NMR data on <u>4b</u> (CDCl₃) ppm: 0.6-2.4: overlapped multiplets of CH₂ and CH protons (14H); δH-1,4,11: 6,55, 6,70 and 6,90, 3x<u>s</u> (3x1H); δOCH₃: 3.90, <u>s</u> (6H).
- ¹H NMR data on <u>5a</u> (CDCl₃) ppm: 0.6-2.1: overlapped multiplats of H-6.7.
 11.14-17 (13H); 6H-13: 3.55, 2xd (J=10 and 9 Hz); 6OCH₃: 3.80, <u>s</u> (6H); 6H-9: 4.50, 2xd (J= 3 and 10 Hz) 6H-1.4: 6.50 and 6.60, 2x<u>s</u> (2x1H).
 ¹³C NMR data on <u>5a</u> (CDCl₃) at 25.2 MHz, ppm: C-1: 112.3; C-2.3: 147.2 and 147.8; C-4: 107.9; C-5: 125.7; C-6: 28.9; C-7: 48.6; C-9: 71.6; C-10: 127.4; C-11: 61.8; C-13: 82.3; C-14: 67.9; C-15: 24.6; C-16: 17.9; C-17: 26.8; CH₃: 55.9 and 56.2.
- 12. ¹H NMR data on <u>5b</u> (CDCl₃) ppm: 0.6-2.4: overlapped multiplets of H-6,7, 11-17 (15H); δ OCH₃: 3.90, <u>a</u> (6H), δ H-9: 4.35, ~<u>t</u> (~12 Hz) δ H-1,4: 6.60 and 6.65, 2x<u>s</u> (2x1H). ¹³C NMR data on <u>5b</u> (CDCl₃) at 25.2 MHz, ppm: C-1: 112.0; C-2,3: 147.2 and 147.8; C-4: 107.9; C-5: 126.1; C-6: 31.4; C-7: 44.5; C-9: 70.4; C-10: 127.4; C-11: 61.8; C-13: 79.5; C-14: 65.9; C-15, 17<u>a</u>: 27.5 and 29.2; C-16,17: 24.2 and 24.8; CH_z: 55.8 and 56.1.
- 13. G. Germain, P. Main and M. M. Woolfson, Acta Cryst. A27, 368 (1971).
- 14. Intensities were collected on an Enraf-Nonius CAD-4 diffractometer with graphite monochromated $CuK_{\overline{c}}$ radiation ($\overline{\lambda} = 1.5418$ Å). The lattice parameters $\underline{a} = 9.770(1)$, $\underline{b} = 17.933(2)$, $\underline{c} = 8.617(6)$ Å, $\beta = 94.72(2)^{\circ}$ [Z = 4, F(000) = 624] were determined and refined by diffractometry.
- 15. A listing of positional parameters for non-hydrogen and hydrogen atoms, together with the anisotropic vibrational parameters for non-hydrogen atoms of 5a, may be obtained from the Cambridge Cryst. Data Centre, Univ. Lab., Lensfield Road, Cambridge CB2 1EW, England [see: Tetrahedron Lett. 3081 (1978)].
- 16. D. Cremer and J. A. Pople, <u>J. Amer. Chem. Soc.</u> 97, 1354 (1975).
- 17. W. L. Duax, C. M. Weeks and D.C. Rohrers: Topics in Stereochemistry, Vol. 9. (Eds: N. L. Allinger and E. L. Eliel), pp. 271-383, New York; John Wiley and Sons, 1976. (Desired for Wr 13 July 1091)

(Received in UK 13 July 1981)